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In an accompanying work it was shown that any subset of quantum mechanical 
observables determines an (up to equivalence) unique partial statistical theory 
with partial states. The crucial role of a so-called basic (e.g., pointer) observable 
in determining an object-subject split with a well-defined subject was made 
clear. In this article the subject subsystem is assumed to be quantum mechani- 
cal, but such that the basic observable is a superselcction one. This leads to 
superselection partial states and to a different approach to the split. Advantages 
and disadvantages of the latter approach are discussed. 

1. I N T R O D U C T I O N  

This article is a follow-up of a previous one (Herbut, 1993) in which 
the quantum mechanical object-subject split with a well-defined subject 
was derived. It was done in the form of a hybrid, i.e., half quantum 
mechanical and half classical discrete, partial state. By this the new general 
concept of a partial state was introduced in the framework of a general 
statistical theory and specified to the mentioned states, 

If we want to forget about the partial-states formalism and have a 
definition of the object-subject split in standard quantum mechanical 
language, then we may proceed as follows. 

Let us start with the vague idea of a split with an ill-defined subject. 
The latter is something undefined belonging to that part of the world which 
is not described by a given quantum state. A split with a well-defined 
subject, on the other hand, can be obtained by displacement (or shift) from 
one with an ill-defined subject (by shrinking the object) as follows: 

(i) Let us envisage a composite quantum system, the state space of 
which is a tensor-product Hilbert space ~ | ~ .  Further, we assume that 
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a state P12 (a statistical operator) is given. We start with the assumption 
that the object (O) is the composite system, and the ill-deft'ned observer or 
subject (S) is somewhere in the rest of the world (to which the state does 
not apply). Further, we imagine a cut (/) (as a sort of a dividing line) 
between them. Symbolically, we write O/S = _ (1 + 2)/ . . .  (the dots stand for 
the ill-defined subject in the rest of the world). 

(ii) A so-called basic observable 

B~ h~ ( k ~ k '  o o ) ~ b k C b  ~, ~Q(2k) 1 (1) 
~ k ~ . 2  , 

k k 

for the second subsystem (a Hermitian operator in ~ )  is defined such that 
it has a purely discrete spectrum with characteristic values b ~ and with Q~k) 
as the corresponding characteristic events (projectors). (The index k 
enumerates the entire discrete spectrum of B ~ Further, we assume that the 
probability Pk of the event (1 | Q(2 k)) in the state P12 is positive: 

Pk =- Tr12((1 | Q~k)) P~2) > 0 (2a) 

We call the corresponding Q(2 k) the subject events, and their specification 
completes the definition of the new (well-defined) subject. 

(iii) Making use of the subject events Q~k) and the composite-system 
state P12, one defines the conditional first-subsystem states 

p~k)== p;~ Tr2((1 | Q~k)) P~2) (2b) 

where Tr2 is the partial trace over subsystem 2. 

Now we are prepared to make a displacement or shift of the cut toward 
the object: 

O/S = (1 + 2)/ . . .  --* O/S =- 1/2 

with the understanding that the subject-events occur, and the conditional 
states p]k), given by (2b), become, after the shift, the states of the individual 
objects (subsystem 1), whereas subsystem2, together with B ~ and Q(2 k), 
plays the role of a well-defined subject (the rest of the world is suppressed). 

The mentioned hybrid partial-state formalism is based (Herbut, 1993) 
on restriction to the set of composite-system observables 

{ (A l |  bkany}={(A~|176 f any}  (3) 
k 

Here A1 is any observable for the first subsystem, bk are any real numbers, 
and f :  {b~ Vk} ~ R~ is any single-valued map. As was explained, the set 
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{ f ( B ~  of second-subsystem observables is understood to be the 
set of classical variables, attributing to the well-defined subject (after the 
shift) a classical (purely discrete) state (probability distribution): 

{Pk - Tr12((1 | Q(2 k)) P12): Vk} (4) 

For the subject to be well defined it is decisive that a basic observable 
B ~ be given. But the classical state of the subject may possibly not 
be necessary. Perhaps also the subject can be quantum mechanically 
understood, but so that the role of the basic observable is kept intact. The 
present article is devoted to an investigation of this possibility. 

In this work we broaden the set of second-subsystem observables 
allowing for incompatibility, but requiring B ~ to be a superselection 
observable with respect to the considered ones. In other words, we now 
take the following set of composite-system observables [notation as in 
Herbut (1993)]: 

V' ---= { (A 1 @ A2): A1 any, [Az, B ~ = 0, otherwise A2 arbitrary} (5) 

We call the corresponding partial states superselection states. They also 
determine a split with a well-defined subject, but in a somewhat different 
way. Precisely how this is done is discussed in the last section (Section 6). 

In Section 2 we define the statistical theory of superselection states, in 
Section 3 we prove that we are dealing with a state-distinguishing partial 
statistical theory, and in Section 4 we demonstrate that the superselection 
states are canonical. In Section 5 we show that an obvious different way to 
define superselection states does not give new results. 

2. THE STATISTICAL THEORY OF SUPERSELECTION 
STATES 

Elaborating (5), we point out the fact that [A2, B ~ = 0  is equivalent 
to 

Vk: [A2, Q(2 k)] =0 

Thus, the compatibility of A2 with B ~ is equivalent to 

1 2 = 2  D(k)d f)(k) ~ 2  ~x2 kr (6) 
k 

Now we define a statistical theory, the states of which will be shown 
to give partial states [cf. Definition 3 in Herbut (1993)] on confinement to 
V' defined by (5). 
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Definition 1. We make the following construction and call it the 
theory of superselection states (justification below): 

(i) The set of variables W consists of Hermitian operators of the 
form 

w -  {(A1 |  Vk} (7a) 

where A1 is an arbitrary Hermitian operator in Y~, and ~k> is an arbitrary 
Hermitian operator in Q(2k)24~2, Vk [cf. (1)]. The bar reminds us of the 
domain. The value set of w consists of the products: 

{ { (aa(k): a ~ spec A1, a (k~ e spec A(2k) }" Vk} (7b) 

where "spec" stands for "spectrum." The measurement procedure for w is 
that of a coincidence measurement of (AI |  1) and of (1 @Zkff~k)Q~k)). 
The result of this measurement is the ordered pair (a, a(k)). 

(ii) The set of states Ss is made up of all entities 

s =  {(Pk, 6(Pk > 0 )  t-12#k)~',. Vk} (8) 

where {Pk: gk} is an arbitrary classical discrete probability distribution, 
and for Pk > 0, ~.(k) is an arbitrary statistical operator in ~ | (Q(2k)~), Vk tUl2 
(for Pk = 0 it need not be defined). The bar reminds us of its domain. The 
generalized Kronecker symbol 6 ( p k > 0 )  is by definition one if p k > 0 ,  
otherwise it is zero. If 

{ s , -  { (p~g), 6(p2i)> O) fi~.i)): Vk}: i =  1, 2 . . . .  I} c Ss (9a) 

and 

{wi:i= 1, 2 , . . . ,  I} 

is a finite set of statistical weights, then, by definition, 

(9b) 

where 

s = ~ wis , -  {(Pk, 6(Pk > 0) v12#~)~',. Vk} 
i 

Vk: p~- ~ wip(/) 
i 

(10a) 

(lOb) 

and for Vk, p ,  > 0, 

~(k) = r (wip~') /Pk)  V12~(k'i) F 1 2  - - / ,  
i 

The set {(wiPk(~ i =  1, 2, . . . ,  I} is here one of statistical weights. 

(10c) 
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The preparation procedures for s equal those of the corresponding 
states pt2 of the composite system, where by "corresponding" we mean an 
element from the inverse image of the map of states (see Theorem 2 below). 

(iii) The average-value formula is 

(w, s )  ~ ~ Pk Tr]k)((A1 @ A(2 k)) r.(k)] ~ 1 2  , (11 
k 

where lr12~ (~) is the trace in ~ | (Q~k)~,~f2). 

Theorem 1. In Definition 1 a state-distinguishing statistical theory is 
constructed. 

Proof  To begin with, we have to show that definition (10a)-(10c) 
is such that a convex combination of convex combinations is a convex 
combination (of the constituents in the latter), i.e., that S is a convex set 
[see Definition 1 in Herbut (1993)]. Let (10a)-(10c) be given, and besides, 

si = ~ wj(i)sj< o, i = 1, 2 , . . . ,  I 
j ( i )  

where Vi: {wj(i): j ( i ) =  1, 2 . . . .  , J(i)} is a finite set of statistical weights, and 
Vj(i): sj<i) e S. Let for each value i = 1, 2 . . . . .  I 

S/(i) - { (p~J(0) r > 0) ~'12#k'/(0)~':" --'~J,Vbl j( i)  = 1, 2, . . . ,  J(i) 

Then the definition of a convex combination (10a)-(10c) (that is under 
investigation) in application to the above system of convex combinations 
gives 

p~) ~ . . . .  (:<m i =  1,2, L Vk rvj( i)  F k  , �9 . . , 

.i(i) 

and for Vk, p~;~> 0, 

f i ( k , i )  __ 12 - -  2 ~rvj( i )  n(J(i))/n(i)'~/Fk /Ul2~(k'j(i)) 

J(O 

Composing the first convex combination and the second system of convex 
combinations, one obtains 

i j ( i )  i j ( i )  

Vk, pk>0 :  

r~( j ( i ) ) /r~( i )~ ~ ( k , j ( i ) )  "~(k)=2 (wip(~)/Pk) ~ (wj(i)rk /1"k ,~'12 F 1 2  
i j ( i )  

= 2 2 (wiwj<o P(kJ(i))/Pk)V12~(k'j(i)) 
i j ( i )  
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Hence, indeed 

i j ( i )  

and this proves that S is a convex set. 
Next we prove that (w, s )  defined in (11) is convex linear in the 

states. We assume (9a) and (9b). Then, in view of (10a)-(10c) we have 

<w, ~ w,s,)=~ Pk Tr~'(A, | .4,')((~ w,p~ 
= Z wi ~ p~O Tr]~)((A, | ,~(2k)) p,~,-(k i)) 

i k 

i 

Finally, to prove that the statistical theory at issue is state distinguish- 
ing, we assume that for the state s given by (8) and for s ' -  
{(p~,, ~(p; > 0) ~5~(2k)): Vk} we have 

( w , s ) = ( w , s ' ) ,  Vw~W 

[cf. (7a)]. Utilizing (11), this amounts to 

Z pk Tr ~kz)((A, | .4(2k)) '~(k)~v,Z,=~p'k Tr~)((A , | A(2k)) r k/ 
k k 

Let 10)lefft~j, and for a fixed k' value Icb)2eQ(zk')ffg2, both normalized 
vectors, and let us take A 1 - 10 ) (01, A(2 ~) - 6k.~, I~b) (~bl. Thus we convert 
the last equation into 

-~k.~ I@~>2= P~,'(OI, (@12 Y f f  ) 10), lq~)2 Pk.(Ol,(~12p,2 10), 

If we now assume ab contrario that Pk' = 0 r  p;, (or the converse of this), 
we can, evidently, choose 10)1 and I~b)2 so that we obtain a contradiction 
from the last equation. If Pk, r 0 ~ p~,, then, in view of the Lemma in the 
Appendix, we obtain 

p ~(k,~ = p;.~,~k.~ 
k ' P '  12 

Taking the trace gives Pk, = P2, and leaves ,~(k')_ fi,l(Zk'~. Hence, s = s'. �9 Y 1 2  - -  
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3. S U P E R S E L E C T I O N  STATES ARE PARTIAL STATES 

Theorem 2. The statistical theory of superselection states gives 
partial states. The map of  variables takes V' given by (5) and (6) onto W 
(see Definition 1) as follows: 

AI | A2= A I | ( ~  Q(2k)A2Q(2k)) ~ { (A1, A(2k)= A2 lo~k~,e2): Vk } (12) 

where Az IQ~e~ is the restriction of A2 to the invariant subspace Q(2k)~. 
The map of  states associates with each statistical operator P~2 in Yf11| ~ f  2 
a superselection state s in the following way: 

PI2 ~ s -- { (P~ -- Tr12 P12( l | Q(2k)), ~(Pk > O ) a(k)~" vk l '  (13a) 

Vk, pk >0:/.,t~(k)12 -- :  Fkn--l(( 1 | Q~k)) p12( 1 | Q(2e))) i jet| ) (13b) 

Proof The map of variables is obviously a bijection of V' onto W. It 
is evidently measurement-procedure and value-set preserving. The map of 
states is a surjection of the convex set of all P~2 onto S. Namely, any 

s =- { (p~, 6(p~ > 0) ~,~#~h',. Vk} e S 

can be obtained from a (corresponding) state of the composite system, e.g., 
from 

P~2 -= ~ PkP]~)( 1 | Q~k)) 
k 

as easily seen. The map of states is convex linear: Let {wi: i =  1, 2 . . . .  , t} 
be a set of statistical weights, and {p~: i =  1, 2 . . . . .  I} a set of statistical 
operators in ~ | ~2. The map at issue acts as follows: 

where Vk 

and for p~O> 0, we have 

Then 

p(k i)= Tr12 p~2)(1 @ Q(2 k)) 

fi(k,i) 12 -(P(ki)) -1 ((I|174174 

i 
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where 

Pk = E wiP(k ') = Tr12 iv 12//(1 | O(2 k)) 
i 

and for Pk > 0, we have 

~(k)  = 2 (i) ~(k,i)  
12 - ( w i p k / p k )  , ' 1 2  

i 

:pkl((l| Wip]t)2)(l| ) ~l@(O~k)~a2 ) 

Thus, s is the image of P12 - Z i  . . . .  ( i )  as claimed. " ik"  12 

Further, the map of states is preparation-procedure preserving because 
the preparation of s is defined as that of any corresponding P12, i.e., as that 
of any element of its inverse image by the map of states (which is, in 
general, a set). 

Finally, we prove that the average value (11) is invariant under the 
two maps taken together: 

= ~ Tra2((A1 | Q(2k)AzQ~k))(1 | Q(2 k)) p12(1 | Q(2k))) 
k 

k 

What remains is to relate the superselection states to the hybrid ones. 
For this we must start with the following inclusion relation between subsets 
of observables in ~'~1 | if2 [cf. (3), (5), and (6)]" 

Theorem 3. The hybrM states s~ are partial states of the superselec- 
tion states s with respect to the subset of variables {v--- {(A~, b j ~ ) ) :  Vk}: 
VA1, Vb~) (i~ k) being the identity ope~rator in Q~k)~) in terms of the map 
of  variables: 

V = --  { ( A l @ b k [ ~ k ) ) :  Vk} =r {(A1, bk) :  Vk} 
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and the map of states: 

S:::DS~- {(Pk, ~(Pk >0)  V12'~(k))" Vk} 

O~ Tr (k)~ (k) SH ------ {(6(Pk > O) p~k)_ 6(pk > v, --2 v,2, Pk): Vk} e SH 

where Tr~ k) is the partial trace over subsystem 2 in ~ | (Q(2k)~2). 

Proof. Since we have analogous procedures for evaluating the convex 
combinations in S and in SH, the preservation of these by the map of states 
is easily proved. This map preserves also the preparation procedure 
because both s and its image SH "inherit" it from one and the same 
composite-system state P~2 that corresponds to both s and s/4 (as easily 
seen). Finally, that the average value is Preserved by the two maps is seen 
as follows: 

({(A1, bk[2(k)): Vk}, s ) = E Pk Tr]~)((A~ | bk[(2 k)) fi]k2)) 
k 

= Z pkbk Trl(Alp~ k)) 
k 

=({(Al ,bk) :Vk} ,SH)  [] 

In View of transitivity of the partial order, we have the following two 
chains of partial states: 

Pl < sH < s < P12 (14a) 

corresponding to the chain of subsets of observables in ~ | ~ (written in 
a simplified way): 

{ A 1 | 1 7 4 1 7 4  B~ (14b) 

and 

{Pk:Vk} <SH <S < p12 (15a) 

corresponding to the chain of sets of observables 

c {(A I|  [A2, B ~ =0}  c {A12 } (15b) 
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4. T H E  S U P E R S E L E C T I O N  STATES ARE C A N O N I C A L  

One is more motivated to make use of partial states if they are canonical 
(i.e., the simplest possible). 

Theorem 4. The statistical theory of superselection states is canoni- 
cal. 

Proof. We have to prove that the entities 

{pk-- Tr12 p12(1 | Q(2k)): Vk} 
{ ,~(k) 

t - ' 1 2  ~--- pkl ( (  1 | Q(2 k)) p,2(1 | Q(f))) I<| Vk, Pk > 0} 

taken together, are necessary and sufficient for distinguishing the equiv- 
alence classes in the set of all quantum mechanical composite-system states 
{P12} when the equivalence relation is based on V' given by (5) [cf. Herbut 
(1993), Definition 7]. Taking an observable (Aj |  V', and having in 
mind (6), the average value that determines the classes, in view of (13a), 
(13b) amounts to 

Tr,2((A, | A2) P,2) 

= ~ Pk Tr12(A1 | Q(2k)A2Q(zk))(p;~(1 | Q~k)) P12( 1 | Q(zk))) 
k 

=~-'~ Pk Tr]~)((A 1 | ~k) )  ~'12a(kh, (16) 
k 

If P12 and P]2 are mapped (by the map of states) into the same super- 
selection state s (i.e., if they determine the same numbers Pk, Vk, and the 
same statistical operators ~'*2a(k) for each Pk > 0), then the rhs of (16) is the 
same for P12 and for P]2 for all (AI |  Hence, necessarily, 
p l z ~ v , P ~ 1 2  . Contrariwise, let us assume that p l 2 ~ v , P ~ 1 2  . Putting AI~ 1 
and A2-Q(2 ~), this entails pk=P'k for VkEK. If p k = p ~ > 0 ,  then (16) 
entails, upon substituting k by k' in it and putting Vk': ~ k ' l _  ~ ~(k) 

~ -  V k ,  k.CX 2 , 

Tr ~k)((A 1 | A(2 k)) ~'12a(k)~, = Tr ]kl((A 1 "k~' ~x 2 ~ ~'(k)~! /'12'~ ,(k)~! 

Taking [r A ~ - I r  (r 1~)2eQ(2k)5~2, X(2k)--1~)2 (fill2 (nor- 
malized vectors), we arrive at 

(411 (~12 fi~ ) lr I~>= = (~b[a (~12 Z',{2 k) Ir 1~>2 

This finally gives (cf. the Appendix) ack)= fi~2 e~, and this is so for Vk. Thus, t-'12 
we have proved that the entities making up a superselection state s are 
characteristic for the equivalence classes, i.e., for the elements of 
{p,e}/.-~v ,. �9 
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5. ARE THERE O T H E R  S U P E R S E L E C T I O N  STATES? 

Inspecting the chain of subsets of observables (14b), one notices that 
one can interpolate another set between the last two sets without violation 
of the underlying idea that the basic observable is a superselection 
observable in the set. This interpolated set is 

V" -- {A~2: any A12 satisfying [A 12, (1 | B~ = 0} 

The commutation relation again amounts to [cf. (6)] 

A12 = ~ (1 | Q~k)) A12( 1 | Q(2k)) (17) 
k 

The question is whether one can get other superselection states when 
one takes the subset V" (cf. the Introduction), i.e., if one can interpolate 
some new states between s and P12 in (14a) in this way. 

Theorem 5. The set of observables V" determines the same super- 
selection states as its subset (5), in which A12 are required to be of the form 
A I |  

Proof  In view of the fact that the partial statistical theory is 
essentially determined by the equivalence relation defining the classes of 
statistical operators [cf. Definition 5, Proposition 1, and Theorem 1 in 
Herbut (1993)], it is sufficient to prove that 

~v, = ~v,, (18) 

If P12 "~ v" P'12, then Trlz(A12P12) = Trlz(A12p'a2 ) for VA12 E V". Since 
V ' c  V" [cf. (5)], we have P12 ~ v' P]2 .  Starting with the latter equivalence 
relation, we know that P12 and P]2 determine the same superselection state 
s [cf. (13a), (13b)]. On the other hand, owing to (17), 

Defining 

Tr,2 A12p12 = ~ Pk Tr12 A12(p~l(1 | QCzk)) p12(1 | Q~k))) 
k 

A(k)=-Alz ]~| 2) 12 (k)Jc 

fi(k)=_ (pk-l(1 | Q(k)) p12( 1 | Q~k))) iw,| 12 

and writing lrl2~ (k) for the trace in ~ | (Q~2k)~2), we have 

T r ( k )  "~(k)~(k) Tr12 A,2P12 = ~ Pk --'12 "* 12 k" 12 
k 
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Thus, the lhs can be expressed in terms of the entities making up s (and 
those making up A12). Since P'~2 determines the same s, this equals also 
Tr12 A12P~2, i.e., we also have plZ~v , ,P t l2 .  �9 

6. HOW WELL IS THE SPLIT DETERMINED IN TERMS OF 
SUPERSELECTION STATES? 

In standard quantum mechanics the shift of the cut O / S -  12/.- --* 
O/S =- 1/2 mentioned in the Introduction is of interest only if one of the 
subject events Q~k) occurs: on the new subject (subsystem 2). We assume 
that the occurrence takes place in an ideal way, i.e., in an ideal measurement 
(Liiders, 1951; Messiah, 1961, p. 333). Then the initial composite-system 
state P12 goes over into 

Pi2 - ~. p#((1 | Q~2 k)) p12(1 | Q~2k)) ) = ~ pk(fi]~)(1 | Q~zk)) ) 
k k 

where for each k, pk > O, r12#k) is the statistical operator in ~ | (Q~k)3ef2) 
appearing in the superselection state s corresponding to P12 [eft (13b)]. 
The above decomposition of the after-the-measurement state P]2 implies 
the following decomposition of the state Pl -= Tr2 P]2 = Tr2 P12 of the first 
subsystem: 

pl = ~ pkp~ k~ 
k 

where Vk, pk> O, P]k)--Tr~ k) ~'a(k)12 = P ;  1 Tr2(pa2( 1 | Q~k)) ) are the first-sub- 
system states appearing explicitly in the hybrid state, but not in the super- 
selection state. In the latter they are only implied (as the subsystem states) 
by :(k) which appear explicitly. Since this decomposition of pl actually P 1 2 ,  

takes place in the new split O/S =- 1/2, the lack of explicit availability of the 
p]k) might be considered to be a drawback of the superselection states in 
comparison with the hybrid states. On the other hand, the actual terms in 
the above decomposition of P'~2 are explicitly available in the superselection 
states, and, reading the decomposition in the reverse direction, they make 
up (by mixing) the actually present after-the-measurement state P'12. This 
may be an advantage of the superselection states over the hybrid states, 
because in the latter the a(k) states are not available at all (not even V12 

implicitly). Thus, the possible statistical correlations in these states are an 
advantage of the superselection states. 

If for some k value, Q~k)is a ray projector, say Q~k)=_ i~b)~k)(~bl~k), 
then, as easily seen, necessarily one has 

a(k)= p]k)(~ ~ \ (k) ~0"" 2(k) 
/-'12 

(because a pure state cannot establish nontrivial statistical correlations). 
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If the occurrence of the subject events Q(2 k) takes place in a nonideaI 
way, i.e., if the corresponding measurement is of the first kind (or 
repeatable) and nonideal (which is possible if we have degeneracy, i.e., if 
Tr 2 Q~k)>l), or even of the second kind (Busch etal.,  1991), then it is 
unknown how P12 changes in the measurement, i.e., the statistical operators 
{a (k)" Vk, pk>0} ,  which are constituents of the superselection states [cf. t~12. 
(13a), (13b)], have no physical meaning. Thus, in this case, which is 
actually more frequent than ideal measurement, the superselection states 
show no advantage over the hybrid ones. It is actually interesting and not 
widely known that in whatever way (in whatever measurement) Q~k~ 
occurs, the first-subsystem state p~k) is the same as when the occurrence is 
ideal (Herbut and Vuji6i6, 1976, Section 6B). 

If the basic observable appears in the context of a macroscopic second 
subsystem as in the example of Bohr's complementarity principle for such 
systems Esee rhe Introduction in Herbut (1993)], then we are dealing with 
bodies of very many degrees of freedom (or subsystems), and we have a 
large, as a rule, infinite dimensionality of (Q~k)~2). Here the statistical 
correlations inherent in the states ~ may be very nontrivial. Though 
precious physically, they may be irrelevant for the split itself. Hence, it 
seems that it is the hybrid states and not the superselection ones that are 
better adapted to the task of determining the split in a canonical way. 

We end this discussion by repeating the remark from the companion 
article: the displacement O/S  = 12/- .. ~ O/S  = 1/2 makes sense physically 
only i f  one makes a measurement of the basic observable, because the 
subject events Q~2 k) have to occur. It is precisely this occurrence that is the 
great mystery of quantum mechanics. 

A P P E N D I X  

Lemma. Let A12 and A'I2 be linear operators in the composite-system 
Hilbert space ~ | Jg2. Let, further, 

(~tll (q~12 A12 ]~/)1 ]~)2 = (~11 (~12 A'I2 11]/)1 ]~)2 

hold for all normalized vectors Ir E ~ ,  I~b) 2 ~ ~2. Then 

d12=d~2 

Proo f  Let B12 - A'12 - A 12. By assumption, V 1• ) 1 e ~ ,  ( O I r  1 = 1, 
v IO))~e~,  <r I ~ ) ~ =  1: 

0 =  <~tl I <@12 B12 Ir IO)2 

=Tr12(l@)l 1~)2 (r (~12) g12 

= Tr12(l~)l (4'11)(1~)2 (@12) B12 (A1) 

902s32;7-g 
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Let k and l be two index values in a given orthonormal basis 
{ I k ) : k =  1, 2 , . . . }  in ~ or  ~ ,  and let k <  1. We define the auxiliary 
normalized (but nonorthogonal) vectors 

l a ) ~ 2  -1/2 I k ) + 2  -1/2 II), I b ) = 2  -1/2 [ k ) + i 2  -a/2 [1) (A2) 

Straightforward evaluation shows that 

i l a ) f a l + l b ) f b l = 2  2 ( l + i ) [ k ) f k l + i l l ) f k l + 2 - ~ ( l + i ) l l ) ( l l  

implying 

] l ) ( k l  = l a ) ( a l - i  qb)(b[  +2-1 ( i  - 1 ) Ik ) (k l  + 2 - 1 ( i  - 1)II) ( / I  (m3) 

and by adjoining of this, one obtains 

Ik)(l]  = l a ) ( a l  + i l b ) ( b l  - 2-1(1 + i) t k ) ( k l  - 2-1(1 + i) 11)(11 (m4) 

Let {li)1: i =  1, 2 . . . .  } covf~ and {]P)2: P =  1, 2 . . . .  } tour2 be complete 
orthonormal bases. The general matrix element of B12 is 

(i[~ (p12B12 ] J ) l  [q)2 =Tr l2 ( l J ) l  (i[x)(lq)2 (P[2)B12 (A5) 

Replacing the possible "off-diagonal" operators in ~1 and/or ovf2 in the 
brackets on the rhs of (A5) by a linear combination of "diagonal" ones 
[utilizing (A3) or (A4) as the  case may be], we find that (AI) implies that 

(i l l  (p[2B12 l J ) l  [q)2 = 0  �9 
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